ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
PLUS2(0, s1(x)) -> PLUS2(0, x)
GE2(s1(x), 0) -> GE2(x, 0)
IFY3(true, x, y) -> GE2(x, y)
DIV2(x, y) -> IFY3(ge2(y, s1(0)), x, y)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
DIV2(x, y) -> GE2(y, s1(0))
GE2(0, s1(s1(x))) -> GE2(0, s1(x))
IF3(true, x, y) -> DIV2(minus2(x, y), y)
PLUS2(s1(x), y) -> PLUS2(x, y)
MINUS2(0, s1(x)) -> MINUS2(0, x)
MINUS2(s1(x), 0) -> MINUS2(x, 0)
IF3(true, x, y) -> MINUS2(x, y)
IFY3(true, x, y) -> IF3(ge2(x, y), x, y)
GE2(s1(x), s1(y)) -> GE2(x, y)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
PLUS2(0, s1(x)) -> PLUS2(0, x)
GE2(s1(x), 0) -> GE2(x, 0)
IFY3(true, x, y) -> GE2(x, y)
DIV2(x, y) -> IFY3(ge2(y, s1(0)), x, y)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
DIV2(x, y) -> GE2(y, s1(0))
GE2(0, s1(s1(x))) -> GE2(0, s1(x))
IF3(true, x, y) -> DIV2(minus2(x, y), y)
PLUS2(s1(x), y) -> PLUS2(x, y)
MINUS2(0, s1(x)) -> MINUS2(0, x)
MINUS2(s1(x), 0) -> MINUS2(x, 0)
IF3(true, x, y) -> MINUS2(x, y)
IFY3(true, x, y) -> IF3(ge2(x, y), x, y)
GE2(s1(x), s1(y)) -> GE2(x, y)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
PLUS2(0, s1(x)) -> PLUS2(0, x)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(0, s1(x)) -> PLUS2(0, x)
POL( 0 ) = 3
POL( s1(x1) ) = x1 + 2
POL( PLUS2(x1, x2) ) = 2x1 + 3x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
PLUS2(s1(x), y) -> PLUS2(x, y)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(s1(x), y) -> PLUS2(x, y)
POL( s1(x1) ) = x1 + 1
POL( PLUS2(x1, x2) ) = 2x1 + 3x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
MINUS2(s1(x), 0) -> MINUS2(x, 0)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(x), 0) -> MINUS2(x, 0)
POL( MINUS2(x1, x2) ) = 2x1 + 3x2
POL( s1(x1) ) = 3x1 + 3
POL( 0 ) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
MINUS2(0, s1(x)) -> MINUS2(0, x)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(0, s1(x)) -> MINUS2(0, x)
POL( MINUS2(x1, x2) ) = 2x1 + 3x2
POL( 0 ) = 3
POL( s1(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
POL( MINUS2(x1, x2) ) = 3x2 + 3
POL( s1(x1) ) = x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
GE2(0, s1(s1(x))) -> GE2(0, s1(x))
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(0, s1(s1(x))) -> GE2(0, s1(x))
POL( 0 ) = 1
POL( s1(x1) ) = 2x1 + 2
POL( GE2(x1, x2) ) = max{0, 2x1 + x2 - 3}
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
GE2(s1(x), 0) -> GE2(x, 0)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(s1(x), 0) -> GE2(x, 0)
POL( s1(x1) ) = 3x1 + 3
POL( 0 ) = 2
POL( GE2(x1, x2) ) = 2x1 + 3x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
GE2(s1(x), s1(y)) -> GE2(x, y)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(s1(x), s1(y)) -> GE2(x, y)
POL( s1(x1) ) = x1 + 3
POL( GE2(x1, x2) ) = 3x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
IF3(true, x, y) -> DIV2(minus2(x, y), y)
IFY3(true, x, y) -> IF3(ge2(x, y), x, y)
DIV2(x, y) -> IFY3(ge2(y, s1(0)), x, y)
ge2(0, 0) -> true
ge2(s1(x), 0) -> ge2(x, 0)
ge2(0, s1(0)) -> false
ge2(0, s1(s1(x))) -> ge2(0, s1(x))
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(0, 0) -> 0
minus2(0, s1(x)) -> minus2(0, x)
minus2(s1(x), 0) -> s1(minus2(x, 0))
minus2(s1(x), s1(y)) -> minus2(x, y)
plus2(0, 0) -> 0
plus2(0, s1(x)) -> s1(plus2(0, x))
plus2(s1(x), y) -> s1(plus2(x, y))
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))